Course Syllabus VII
- COURSE OVERVIEW
- SYLLABUS
- ASSIGNMENT
- CBSE OLD PAPERS
- SAMPLE PAPER
- NCERT SOLUTIONS
Program Features :
Weekdays Batches and Special Weekend Batches
Total Duration of Syllabus: 120 hrs
a) 3 Hours / Week - 1 hr per Day (3 Days in a Week)
b) 3 Hours / week 1.5 hrs per Day (2 Days in a Week)
2 Tests per Subject Per Month
Facilities :
Extra Classes for Doubts Removal and School Test Preparation
Timely Syllabus Completion
Full Length Test series for Final Touch
Online Support 24 X 7
Course Coverage Twice
Tests & Exam Tips
Technology Aided Teaching for Difficult Concepts
Recorded Lecture for Reference
Personalized Tuitions for 9th and 10th
NTSE & JSTSE Preparatory Courses
College Admissions Assistance
Syllabus of VII Class
Number System (50 hrs)
(i) Knowing our Numbers: Integers
• Multiplication and division of integers (through patterns). Division by zero is meaningless
• Properties of integers (including identities for addition & multiplication, commutative, associative, distributive) (through patterns). These would include examples from whole numbers as well. Involve expressing commutative and associative properties in a general form. Construction of counterexamples, including some by children. Counter examples like subtraction is not commutative.
• Word problems including integers (all operations) (ii) Fractions and rational numbers:
• Multiplication of fractions
• Fraction as an operator
• Reciprocal of a fraction
• Division of fractions
• Word problems involving mixed fractions
• Introduction to rational numbers (with representation on number line)
• Operations on rational numbers (all operations)
• Representation of rational number as a decimal.
• Word problems on rational numbers (all operations)
• Multiplication and division of decimal fractions
• Conversion of units (length & mass)
• Word problems (including all operations) (iii) Powers:
• Exponents only natural numbers.
• Laws of exponents (through observing patterns to arrive at generalisation.) (i) nmnm aaa + ⋅ = (ii) () aa m n mn =(iii) a a amnmn= − , where mn − ∈Ν
(iv)
Algebra (20 hrs) ALGEBRAIC EXPRESSIONS
• Generate algebraic expressions (simple) involving one or two variables
• Identifying constants, coefficient, powers
• Like and unlike terms, degree of expressions e.g., xy 2 etc. (exponent≤ 3, number of variables )
• Addition, subtraction of algebraic
expressions (coefficients should be integers).
• Simple linear equations in one variable (in contextual problems) with two operations (avoid complicated coefficients)
Ratio and Proportion (20 hrs)
• Ratio and proportion (revision)
• Unitary method continued, consolidation, general expression.
• Percentage- an introduction.
• Understanding percentage as a fraction with denominator 100
• Converting fractions and decimals into percentage and vice-versa.
• Application to profit and loss (single transaction only)
• Application to simple interest (time period in complete years).
Geometry (60 hrs)
Understanding shapes:
• Pairs of angles (linear, supplementary, complementary, adjacent, vertically opposite) (verification and simple proof of vertically opposite angles)
• Properties of parallel lines with transversal (alternate,corresponding, interior, exterior angles) (ii) Properties of triangles:
• Angle sum property (with notions of proof & verification through paper folding, proofs using property of parallel lines, difference between proof and verification.)
• Exterior angle property
• Sum of two sides of a it’s third side
• Pythagoras Theorem (Verification only) (iii) Symmetry
• Recalling reflection symmetry
• Idea of rotational symmetry, observations of rotational symmetry of 2-D objects. (900, 1200, 1800)
• Operation of rotation through 900 and 1800 of simple figures.
• Examples of figures with both rotation and reflection symmetry (both operations)
• Examples of figures that have reflection and rotation symmetry and vice-versa (iv)Representing 3-D in 2-D:
• Drawing 3-D figures in 2-D showing hidden faces.
• Identification and counting of vertices, edges, faces, nets (for cubes cuboids, and cylinders, cones).
• Matching pictures with objects (Identifying names)
• Mapping the space around approximately through visual estimation.
(v) Congruence
• Congruence through superposition (examplesblades, stamps, etc.)
• Extend congruence to simple geometrical shapes e.g. triangles, circles.
• Criteria of congruence (by verification) SSS, SAS, ASA, RHS (vi)Construction (Using scale, protractor, compass)
• Construction of a line parallel to a given line from a point outside it.(Simple proof as remark with the reasoning of alternate angles)
• Construction of simple triangles. Like given three sides, given a side and two angles on it, given two sides and the angle between them.
Mensuration (15 hrs)
• Revision of perimeter, Idea of , Circumference of Circle Area Concept of measurement using a basic unit area of a square, rectangle, triangle, parallelogram and circle, area between two rectangles and two concentric circles.
Data handling (15 hrs)
(i) Collection and organisation of data – choosing the data to collect for a hypothesis testing.
(ii) Mean, median and mode of ungrouped data – understanding what they represent.
(iii) Constructing bargraphs
(iv) Feel of probability using data through experiments.
Notion of chance in events like tossing coins, dice etc. Tabulating and counting occurrences of 1 through 6 in a number of throws. Comparing the observation with that for a coin.
Observing strings of throws, notion of randomness
Sample Paper for Class VII Students